
 ISSN : 2454-9924

RANDOMIZED DISPERSED STORAGE SYSTEM FOR

MULTIPLE CLOUD WITH NETWORK CODING

G. Hemavathi, Mrs. D. Udaya,

M.E*, Dept. of CSE, Assistant Professor,

Dr. Pauls Engineering College, Dept. of CSE,

ghemavathicse@gmail.com Dr. Pauls Engineering College,

Abstract

In cloud storage data are striped across multiple cloud vendors to provide fault tolerance.

When the cloud permanently fails due to any disaster, can be repaired using other surviving

clouds to preserve data redundancy. In existing system they implemented a conventional erasure

codes performs when some cloud experience short term transient failure not the permanent

failure. In proposed, implements a proxy-based storage system for fault-tolerant multiple-cloud

storage called NC Cloud, which achieves cost-effective repair for a permanent single-cloud

failure. NC Cloud is built on top of a network-coding-based storage scheme called the functional

minimum-storage regenerating (FMSR) codes, which maintain the same fault tolerance and data

redundancy as in traditional erasure codes (e.g., RAID-6), but use less repair traffic and hence

incur less monetary cost due to data transfer. This system implement a proof-of-concept

prototype of NC Cloud and deploy it at top of both local and commercial clouds. By using

FMSR, provides key feature to relax encoding requirement when the repair operation.

Keywords: Regenerating codes, network coding, fault tolerance, recovery,

1. INTRODUCTION

Cloud storage provides an on-demand remote

backup solution. However, using a single cloud

storage provider raises concerns such as having a

single point of failure and vendor lock-ins.

While striping data with conventional erasure

mailto:ghemavathicse@gmail.com

 ISSN : 2454-9924

codes performs well when some clouds

experience short-term transient failures or

foreseeable permanent failures , there are real-

life cases showing that permanent failures do

occur and are not always foreseeable . In view of

this, this work focuses on unexpected permanent

cloud failures. When a cloud fails permanently,

it is necessary to activate repair to maintain data

redundancy and fault tolerance. A repair

operation retrieves data from existing surviving

clouds over the network and reconstructs the lost

data in a new cloud. Today’s cloud storage

providers charge users for outbound data, so

moving an enormous amount of data across

clouds can introduce significant monetary costs.

It is important to reduce the repair traffic (i.e.,

the amount of data being transferred over the

network during repair), and hence the monetary

cost due to data migration. To minimize repair

traffic, regenerating codes have been proposed

for storing data redundantly in a distributed

storage system (a collection of interconnected

storage nodes). Each node could refer to a

simple storage device, a storage site, or a cloud

storage provider. Regenerating codes are built on

the concept of network coding, in the sense that

nodes perform encoding operations and send

encoded data. During repair, each surviving

node encodes its stored data chunks and sends

the encoded chunks to a new node, which then

regenerates the lost data. It is shown that

regenerating codes require less repair traffic than

traditional erasure codes with the same fault

tolerance level. Regenerating codes have been

extensively studied in the theoretical context.

However, the practical performance of

regenerating codes remains uncertain. One key

challenge for deploying regenerating codes in

practice is that most existing regenerating codes

require storage nodes to be equipped with

computation capabilities for performing

encoding operations during repair. On the other

hand, to make regenerating codes portable to any

cloud storage service, it is desirable to assume

only a thin-cloud inter- face, where storage

nodes only need to support the standard

read/write functionalities.

2. IMPORTANCE OF REPAIR IN

MULTIPLE- CLOUD STORAGE

We consider two types of failures: transient

failure and permanent failure.

Transient failure: A transient failure is

expected to be short-term, such that the “failed”

cloud will return to normal after some time and

no outsourced data is lost. We highlight that

even though Amazon claims that its service is

designed for providing 99.99% availability ,

there are arising concerns about this claim and

the reliability of other cloud providers after

Amazon’s outage in April 2011 . We thus expect

 ISSN : 2454-9924

that transient failures are common, but they will

eventually be recovered. If we deploy multiple-

cloud storage with enough redundancy, then we

can retrieve data from the other surviving clouds

during the failure period.

Permanent failure: A permanent failure is

long-term, in the sense that the outsourced data

on a failed cloud will become permanently

unavailable. Clearly, a permanent failure is more

disastrous than a transient one. Although we

expect that a permanent failure is unlikely to

happen, there are several situations where

permanent cloud failures are still possible: •

Data center outages in disasters. AFCOM [48]

found that many data centers are ill-prepared for

disasters. For example, 50% of the respondents

have no plans to repair damages after a disaster.

It was reported [48] that the earthquake and

tsunami in northeastern Japan in March 11, 2011

knocked out several data centers there. • Data

loss and corruption. There are real-life cases

where a cloud may accidentally lose data [12],

[40], [58]. In the case of Magnolia [40], half a

terabyte of data, including its backups, are all

lost and unrecoverable. • Malicious attacks. To

provide security guarantees for outsourced data,

one solution is to have the client application

encrypt the data before putting the data on the

cloud. On the other hand, if the outsourced data

is corrupted (e.g., by virus or malware), then

even though the content of the data is encrypted

and remains confidential to outsiders, the data

itself is no longer useful. AFCOM found that

about 65 percent of data centers have no plan or

procedure to deal with cyber-criminals.

3. MOTIVATION OF FMSR

CODES

We consider a distributed, multiple-

cloud storage set- ting from a client’s

perspective, where data is striped over

multiple cloud providers. We propose a

proxy- based design that interconnects

multiple cloud repositories. The proxy

serves as an interface between client

applications and the clouds. If a cloud

experiences a permanent failure.

We consider fault-tolerant storage based

on a type of maximum distance separable (MDS)

codes. Given a file object of size M, we divide it

into equal-size native chunks, which are linearly

combined to form code chunks. When an (n,k)-

MDS code is used, the native/code chunks are then

distributed over n (larger than k) nodes, each

storing chunks of a total size M/k, such that the

original file object may be reconstructed from the

chunks contained in any k of the n nodes. Thus, it

tolerates the failures of any n − k nodes. We call

this fault tolerance feature the MDS property. The

extra feature of FMSR codes is that reconstructing

the chunks stored in a failed node can be achieved

 ISSN : 2454-9924

by downloading less data from the surviving nodes

than reconstructing the whole file. This paper

considers a multiple-cloud setting with two levels

of reliability: fault tolerance and recovery. First,

we assume that the multiple-cloud storage is

double- fault tolerant (e.g., as in conventional

RAID-6 codes) and provides data availability

under the transient unavailability of at most two

clouds. That is, we set k = n − 2. Thus, clients can

always access their data as long as no more than

two clouds experience transient failures (see

examples in Table 1) or any possible connectivity

problems. We expect that such a fault tolerance

level suffices in practice. Second, we consider

single-fault recovery in multiple-cloud storage,

given that a permanent cloud failure is less

frequent but possible. Our primary objective is to

minimize the cost of storage repair for a

permanent single-cloud failure. In this work, we

focus on comparing two codes: traditional RAID-6

codes and our FMSR codes with double-fault

tolerance3. We define the repair traffic as the

amount of outbound data being downloaded from

the other surviving clouds during the single-cloud

failure recovery. We seek to minimize the repair

traffic for cost-effective repair. Here, we do not

consider the inbound traffic (i.e., the data being

written to a cloud), as it is free of charge for many

cloud providers (see Table 3 in Section 6). We

now study the repair traffic involved in different

coding schemes via examples. Suppose that we

store a file of size M on four clouds, each viewed

as a logical storage node. Let us first consider

conventional RAID-6 codes, which are double-

fault tolerant. Here, we consider a RAID-6 code

implementation based on the Reed-Solomon code.

We divide the file into two native chunks (i.e., A

and B) of size M/2 each. We add two code chunks

formed by the linear combinations of the native

chunks. Suppose now that Node 1 is down. Then

the proxy must download the same number of

chunks as the original file from two other nodes

(e.g., B and A + B from Nodes 2 and 3,

respectively). It then reconstructs and stores the

lost chunk A on the new node. The total storage

size is 2M, while the repair traffic is M.

Regenerating codes have been proposed to reduce

the repair traffic. One class of regenerating codes

is called the exact minimum-storage regenerating

(EMSR) codes . EMSR codes keep the same

storage size as in RAID- 6 codes, while having the

storage nodes send encoded chunks to the proxy

so as to reduce the repair traffic. Figure 2(b)

illustrates the double-fault tolerant implementation

of EMSR codes. We divide a file into four chunks,

and allocate the native and code chunks as shown

in the figure. Suppose Node 1 is down. To repair

it, each surviving node sends the XOR summation

of the data chunks to the proxy, which then

reconstructs the lost chunks. We can see that in

EMSR codes, the storage size is 2M (same as

RAID-6 codes), while the repair traffic is 0.75M,

 ISSN : 2454-9924

which is 25% of saving (compared with RAID-6

codes). EMSR codes leverage the notion of

network coding, as the nodes generate encoded

chunks during repair.

Figure: System model for Repair

operation

4. FMSR CODE

IMPLEMENTATION

We now present the details for

implementing FMSR codes in multiple-

cloud storage. We specify three

operations for FMSR codes on a

particular file object: (1) file upload; (2)

file download; (3) repair. Each cloud

repository is viewed as a logical storage

node. Our implementation assumes a

thin-cloud interface [60], such that the

storage nodes (i.e., cloud repositories)

only need to support basic read/write

operations. Thus, we expect that our

FMSR code implementation is

compatible with today’s cloud storage

services. One property of FMSR codes is

that we do not require lost chunks to be

exactly reconstructed, but instead in each

repair, we regenerate code chunks that

are not necessarily identical to those

originally stored in the failed node, as

long as the MDS property holds. We

propose a two-phase checking scheme,

which ensures that the code chunks on all

nodes always satisfy the MDS property,

and hence data availability, even after

iterative repairs. In this section, we

analyze the importance of the two-phase

checking scheme.

4.1 Basic operations

4.1.1 File Upload

To upload a file F, we first divide it into

k(n−k) equal- size native chunks,

denoted by (Fi)i=1,2,···,k(n−k). We then

encode these k(n − k) native chunks into

n(n − k) code chunks, denoted by

(Pi)i=1,2,···,n(n−k). Each Pi is formed

by a linear combination of the k(n − k)

native chunks. Specifically, we let EM =

[αi,j] be an n(n−k)× k(n−k) encoding

matrix for some coefficients αi,j (where i

= 1,...,n(n − k) and j = 1,...,k(n − k)) in

the Galois field GF(28). We call a row

vector of EM an encoding coefficient

 ISSN : 2454-9924

vector (ECV), which contains k(n−k)

elements. We let ECVi denote the ith

row vector of EM. We com- pute each Pi

by the product of ECVi and all the native

chunks F1,F2,···, Fk(n−k), i.e., Pi =

Pk(n−k) j=1 αi,jFj for

i = 1,2,···,n(n−k), where all arithmetic

operations are performed over GF(28).

The code chunks are then evenly stored

in the n storage nodes, each having (n−k)

chunks. Also, we store the whole EM in

a metadata object that is then replicated

to all storage nodes There are many ways

of constructing EM, as long as it passes

our two-phase checking. Note that the

implementation details of the arithmetic

operations in Galois Fields are

extensively discussed in

4.1.2 File Download

To download a file, we first download

the corresponding metadata object that

contains the ECVs. Then we select any k

of the n storage nodes, and download the

k(n−k) code chunks from the k nodes.

The ECVs of the k(n−k) code chunks can

form a k(n−k)×k(n−k) square matrix. If

the MDS property is maintained, then by

definition, the inverse of the square

matrix must exist. Thus, we multiply the

inverse of the square matrix with the

code chunks and obtain the original k(n −

k) native chunks. The idea is that we

treat FMSR codes as standard Reed-

Solomon codes, and our technique of

creating an inverse matrix to decode the

original data has been described in the

tutorial [46].

4.1.3 Iterative Repairs

We now consider the repair of FMSR

codes for a file F for a permanent single-

node failure. Given that FMSR codes

regenerates different chunks in each

repair, one challenge is to ensure that the

MDS property still holds even after

iterative repairs. This is in contrast to

regenerating the exact lost chunks as in

RAID-6, which guarantees the invariance

of the stored chunks. Here, we propose a

two-phase checking heuristic as follows.

Suppose that the (r −1)th repair is

successful, and we now consider how to

operate the rth repair for a single

permanent node failure (where r ≥ 1). We

first check if the new set of chunks in all

storage nodes satisfies the MDS property

after the rth repair. In addition, we also

check if another new set of chunks in all

storage nodes still satisfies the MDS

property after the (r + 1)th repair, should

another single permanent node failure

 ISSN : 2454-9924

occur (we call this the repair MDS

(rMDS) property).

5. NCCLOUD DESIGN AND

IMPLEMENTATION

We implement NC Cloud as a proxy

that bridges user applications and

multiple clouds. Its design is built on

three layers. The file system layer

presents NC Cloud as a mounted drive,

which can thus be easily interfaced with

general user applications. The coding

layer deals with the encoding and

decoding functions. The storage layer

deals with read/write requests with

different clouds. Each file is associated

with a metadata object, which is

replicated at each repository. The

metadata object holds the file details and

the coding information (e.g., encoding

coefficients for FMSR codes). NCCloud

is mainly implemented in Python, while

the coding schemes are implemented in

C for better efficiency. The file system

layer is built on FUSE . The coding layer

implements both RAID-6 and FMSR

codes. Our RAID-6 code implementation

is based on the Reed-Solomon code (as

shown in Figure 2(a)) for baseline

evaluation. We use zfec to implement

the RAID-6 codes, and we utilize the

optimizations made in zfec to implement

FMSR codes for fair comparison. Recall

that FMSR codes generate multiple

chunks to be stored on the same

repository. To save the request cost

overhead, multiple chunks destined for

the same repository are aggregated

before upload. Thus, FMSR codes keep

only one (aggregated) chunk per file

object on each cloud, as in RAID-6

codes. To retrieve a specific chunk, we

calculate its offset within the combined

chunk and issue a range GET request.

6. EVALUATION

6.1 Cost Analysis

6.1.1 Repair Cost Saving

We first analyze the saving of

monetary costs in repair in practice.

Table 3 shows the monthly price plans

for three major providers as of May

2013. We take the cost from the first

chargeable usage tier (i.e., storage usage

within 1TB/month; data transferred out

more than 1GB/month but less than

10TB/month). From the analysis in

Section 3, we can save 25-50% of the

download traffic during storage repair.

 ISSN : 2454-9924

The storage size and the number of

chunks being generated per file object are

the same in both RAID-6 and FMSR

codes (assuming that we aggregate

chunks in FMSR codes as described in).

However, in the analysis, we have

ignored two practical considerations: the

size of metadata (Section 5) and the

number of requests issued during repair.

We now argue that they are negligible

and that the simplified calculations based

only on file size suffice for real-life

applications. Metadata size: Our

implementation currently keeps the

metadata size of FMSR codes within 160

bytes when n = 4 and k = 2, regardless of

the file size. For a large n, say when n =

12 and k = 10, the metadata size

10 is still within 900 bytes. NCCloud

aims at long-term backups, and can be

integrated with other backup

applications. Existing backup

applications typically aggregate small

files into a larger data chunk in order to

save the processing overhead. For

example, the default setting for Cumulus

creates chunks of around 4MB each.

Thus, the metadata size overhead can be

made negligible. Since both RAID-6 and

FMSR codes store the same amount of

file data, they incur very similar storage

costs in normal usage (assuming that the

metadata costs are negligible). Number

of requests providers charge for requests.

RAID-6 and FMSR codes differ in the

number of requests when retrieving data

during repair. Suppose that we store a file

object of size 4MB with n = 4 and k = 2.

During repair, RAID-6 and FMSR codes

retrieve two and three chunks,

respectively. The cost overhead due to

the GET requests for RAID-6 codes is at

most 0.171%, and that for FMSR codes

is at most 0.341%, a mere 0.17%

increase.

6.2 Response Time Analysis

We deploy our NCCloud prototype in

real environments. We evaluate the

response time performance of three basic

operations, namely file upload, file

download, and repair, in two scenarios.

The first part analyzes in detail the time

taken by different NCCloud operations.

It is done on a local cloud storage tested

in order to lessen the effects of network

fluctuations. The second part evaluates

how NCCloud actually performs in a

commercial cloud environment. All

results are averaged over 40 runs. We

assume that repair coefficients are

generated offline , so the time taken by

 ISSN : 2454-9924

two-phase checking is not accounted for

in the repair operation.

7. RELATED WORK

We review the related work in

multiple-cloud storage and failure

recovery. Multiple-cloud storage. There

are several systems proposed for

multiple-cloud storage. HAIL provides

integrity and availability guarantees for

stored data. RACS uses erasure coding to

mitigate vendor lock- ins when switching

cloud vendors. It retrieves data from the

cloud that is about to fail and moves the

data to the new cloud. Unlike RACS,

NCCloud excludes the failed cloud in

repair. Vukoli´c advocates using multiple

independent clouds to provide Byzantine

fault tolerance. DEPSKY [10] addresses

Byzantine fault tolerance by combining

encryption and erasure coding for stored

data. Single-node failure recovery

schemes that minimize the amount of

data read (or I/Os) for XOR-based

erasure codes. For example, authors of

[62], [63] propose opti- mal recovery for

specific RAID-6 codes and reduce the

amount of data read by up to around 25%

(compared to conventional repair that

downloads the amount of orig- inal data)

for any number of nodes. Note that our

FMSR codes can achieve 25% saving

when the number of nodes is four, and up

to 50% saving if the number of nodes

increases. Authors of propose an

enumeration-based approach to search

for an optimal recovery solution for

arbitrary XOR-based erasure codes.

Efficient recovery is recently addressed

in commercial cloud storage systems. For

example, new constructions of non-MDS

era- sure codes designed for efficient

recovery are proposed for Azure and

Facebook . The codes used in trade

storage overhead for performance, and

are mainly designed for data-intensive

computing. Our work targets the cloud

backup applications. Minimizing repair

traffic. Regenerating codes stem from the

concept of network codin2g and

minimize the repair traffic among storage

nodes. They exploit the optimal trade-off

between storage cost and repair traffic,

and there are two optimal points.

8 .CONCLUSIONS

We present NCCloud, a proxy-based,

multiple-cloud storage system that

practically addresses the reliability of

today’s cloud backup storage. NCCloud

not only provides fault tolerance in

storage, but also allows cost-effective

 ISSN : 2454-9924

repair when a cloud permanently fails.

NCCloud implements a practical version

of the functional minimum storage

regenerating (FMSR) codes, which

regenerates new parity chunks during

repair subject to the required degree of

data redundancy. Our FMSR code

implementation eliminates the en- coding

requirement of storage nodes (or cloud)

during repair, while ensuring that the

new set of stored chunks after each round

of repair preserves the required fault

tolerance. Our NCCloud prototype shows

the effectiveness of FMSR codes in the

cloud backup usage, in terms of

monetary costs and response times.

9. REFERENCES

[1] H. Abu-Libdeh, L. Princehouse, and

H. Weatherspoon. RACS: A Case for

Cloud Storage Diversity. In Proc. of

ACM SoCC, 2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and

R. W. Yeung. Network Information

Flow. IEEE Trans. on Information

Theory, 46(4):1204– 1216, Jul 2000.

[3] Amazon. AWS Case Study:

Backupify. http://aws.amazon.com/

solutions/case-studies/backupify/.

[4] Amazon. Case Studies.

https://aws.amazon.com/solutions/case-

studies/#backup. [5] Amazon Glacier.

http://aws.amazon.com/glacier/.

[6] Amazon S3.

http://aws.amazon.com/s3.

[7] M. Armbrust, A. Fox, R. Griffith, A.

D. Joseph, R. Katz, A. Kon- winski, G.

Lee, D. Patterson, A. Rabkin, I. Stoica,

and M. Zaharia. A View of Cloud

Computing. Communications of the

ACM, 53(4):50–58, 2010.

[8] Asigra. Case Studies.

http://www.asigra.com/product/case-

studies/. [9] AWS Service Health

Dashboard. Amazon s3 availability

event: July 20, 2008.

http://status.aws.amazon.com/s3-

20080720.html.

[10] A. Bessani, M. Correia, B.

Quaresma, F. Andr´e, and P. Sousa.

DEPSKY: Dependable and Secure

Storage in a Cloud-of-Clouds. In Proc. of

ACM EuroSys, 2011.

[11] K. D. Bowers, A. Juels, and A.

Oprea. HAIL: A High-Availability and

Integrity Layer for Cloud Storage. In

Proc. of ACM CCS, 2009. [12] Business

Insider. Amazon’s Cloud Crash Disaster

Permanently Destroyed Many

Customers’ Data.

http://www.businessinsider.

http://aws.amazon.com/
http://aws.amazon.com/glacier/
http://aws.amazon.com/s3
http://www.asigra.com/product/case-
http://status.aws.amazon.com/s3-20080720.html
http://status.aws.amazon.com/s3-20080720.html

 ISSN : 2454-9924

com/amazon-lost-data-2011-4/, Apr

2011.

[13] B. Calder et al. Windows Azure

Storage: A Highly Available Cloud

Storage Service with Strong Consistency.

In Proc. of ACM SOSP, 2011.

[14] B. Chen, R. Curtmola, G. Ateniese,

and R. Burns. Remote Data Checking for

Network Coding-Based code.

