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Abstract 

In cloud storage data are striped across multiple cloud vendors to provide fault tolerance. 

When the cloud permanently fails due to any disaster, can be repaired using other surviving 

clouds to preserve data redundancy. In existing system they implemented a conventional erasure 

codes performs when some cloud experience short term transient failure not the permanent 

failure. In proposed, implements a proxy-based storage system for fault-tolerant multiple-cloud 

storage called NC Cloud, which achieves cost-effective repair for a permanent single-cloud 

failure. NC Cloud is built on top of a network-coding-based storage scheme called the functional 

minimum-storage regenerating (FMSR) codes, which maintain the same fault tolerance and data 

redundancy as in traditional erasure codes (e.g., RAID-6), but use less repair traffic and hence 

incur less monetary cost due to data transfer. This system implement a proof-of-concept 

prototype of NC Cloud and deploy it at top of both local and commercial clouds. By using 

FMSR, provides key feature to relax encoding requirement when the repair operation. 
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1. INTRODUCTION 

 
Cloud storage provides an on-demand remote 

backup solution. However, using a single cloud 

storage provider raises concerns such as having a 

single point of failure and vendor lock-ins. 

While striping data with conventional erasure 
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codes performs well when some clouds 

experience short-term transient failures or 

foreseeable permanent failures , there are real- 

life cases showing that permanent failures do 

occur and are not always foreseeable . In view of 

this, this work focuses on unexpected permanent 

cloud failures. When a cloud fails permanently, 

it is necessary to activate repair to maintain data 

redundancy and fault tolerance. A repair 

operation retrieves data from existing surviving 

clouds over the network and reconstructs the lost 

data in a new cloud. Today’s cloud storage 

providers charge users for outbound data, so 

moving an enormous amount of data across 

clouds can introduce significant monetary costs. 

It is important to reduce the repair traffic (i.e., 

the amount of data being transferred over the 

network during repair), and hence the monetary 

cost due to data migration. To minimize repair 

traffic, regenerating codes have been proposed 

for storing data redundantly in a distributed 

storage system (a collection of interconnected 

storage nodes). Each node could refer to a 

simple storage device, a storage site, or a cloud 

storage provider. Regenerating codes are built on 

the concept of network coding, in the sense that 

nodes perform encoding operations and send 

encoded data. During repair, each surviving 

node encodes its stored data chunks and sends 

the encoded chunks to a new node, which then 

regenerates the lost data. It is shown that 

regenerating codes require less repair traffic than 

traditional erasure codes with the same fault 

tolerance level. Regenerating codes have been 

extensively studied in the theoretical context. 

However, the practical performance of 

regenerating codes remains uncertain. One key 

challenge for deploying regenerating codes in 

practice is that most existing regenerating codes 

require storage nodes to be equipped with 

computation capabilities for performing 

encoding operations during repair. On the other 

hand, to make regenerating codes portable to any 

cloud storage service, it is desirable to assume 

only a thin-cloud inter- face, where storage 

nodes only need to support the standard 

read/write functionalities. 

 

2. IMPORTANCE  OF REPAIR IN 

MULTIPLE- CLOUD STORAGE 

We consider two types of failures: transient 

failure and permanent failure. 

 

Transient failure: A transient failure is 

expected to be short-term, such that the “failed” 

cloud will return to normal after some time and 

no outsourced data is lost. We highlight that 

even though Amazon claims that its service is 

designed for providing 99.99% availability , 

there are arising concerns about this claim and 

the reliability of other cloud providers after 

Amazon’s outage in April 2011 . We thus expect 
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that transient failures are common, but they will 

eventually be recovered. If we deploy multiple- 

cloud storage with enough redundancy, then we 

can retrieve data from the other surviving clouds 

during the failure period. 

 

Permanent failure: A permanent failure is 

long-term, in the sense that the outsourced data 

on a failed cloud will become permanently 

unavailable. Clearly, a permanent failure is more 

disastrous than a transient one. Although we 

expect that a permanent failure is unlikely to 

happen, there are several situations where 

permanent cloud failures are still possible: • 

Data center outages in disasters. AFCOM [48] 

found that many data centers are ill-prepared for 

disasters. For example, 50% of the respondents 

have no plans to repair damages after a disaster. 

It was reported [48] that the earthquake and 

tsunami in northeastern Japan in March 11, 2011 

knocked out several data centers there. • Data 

loss and corruption. There are real-life cases 

where a cloud may accidentally lose data [12], 

[40], [58]. In the case of Magnolia [40], half a 

terabyte of data, including its backups, are all 

lost and unrecoverable. • Malicious attacks. To 

provide security guarantees for outsourced data, 

one solution is to have the client application 

encrypt the data before putting the data on the 

cloud. On the other hand, if the outsourced data 

is corrupted (e.g., by virus or malware), then 

even though the content of the data is encrypted 

and remains confidential to outsiders, the data 

itself is no longer useful. AFCOM found that 

about 65 percent of data centers have no plan or 

procedure to deal with cyber-criminals. 

 

 
3. MOTIVATION OF FMSR 

CODES 

We consider a distributed, multiple- 

cloud storage set- ting from a client’s 

perspective, where data is striped over 

multiple cloud providers. We propose a 

proxy- based design that interconnects 

multiple cloud repositories. The proxy 

serves as an interface between client 

applications and the clouds. If a cloud 

experiences a permanent failure. 

We consider fault-tolerant storage based 

on a type of maximum distance separable (MDS) 

codes. Given a file object of size M, we divide it 

into equal-size native chunks, which are linearly 

combined to form code chunks. When an (n,k)- 

MDS code is used, the native/code chunks are then 

distributed over n (larger than k) nodes, each 

storing chunks of a total size M/k, such that the 

original file object may be reconstructed from the 

chunks contained in any k of the n nodes. Thus, it 

tolerates the failures of any n − k nodes. We call 

this fault tolerance feature the MDS property. The 

extra feature of FMSR codes is that reconstructing 

the chunks stored in a failed node can be achieved 
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by downloading less data from the surviving nodes 

than reconstructing the whole file. This paper 

considers a multiple-cloud setting with two levels 

of reliability: fault tolerance and recovery. First, 

we assume that the multiple-cloud storage is 

double- fault tolerant (e.g., as in conventional 

RAID-6 codes) and provides data availability 

under the transient unavailability of at most two 

clouds. That is, we set k = n − 2. Thus, clients can 

always access their data as long as no more than 

two clouds experience transient failures (see 

examples in Table 1) or any possible connectivity 

problems. We expect that such a fault tolerance 

level suffices in practice. Second, we consider 

single-fault recovery in multiple-cloud storage, 

given that a permanent cloud failure is less 

frequent but possible. Our primary objective is to 

minimize the cost of storage repair for a  

permanent single-cloud failure. In this work, we 

focus on comparing two codes: traditional RAID-6 

codes and our FMSR codes with double-fault 

tolerance3. We define the repair traffic as the 

amount of outbound data being downloaded from 

the other surviving clouds during the single-cloud 

failure recovery. We seek to minimize the repair 

traffic for cost-effective repair. Here, we do not 

consider the inbound traffic (i.e., the data being 

written to a cloud), as it is free of charge for many 

cloud providers (see Table 3 in Section 6). We 

now study the repair traffic involved in different 

coding schemes via examples. Suppose that we 

store a file of size M on four clouds, each viewed 

as a logical storage node. Let us first consider 

conventional RAID-6 codes, which are double- 

fault tolerant. Here, we consider a RAID-6 code 

implementation based on the Reed-Solomon code. 

We divide the file into two native chunks (i.e., A 

and B) of size M/2 each. We add two code chunks 

formed by the linear combinations of the native 

chunks. Suppose now that Node 1 is down. Then 

the proxy must download the same number of 

chunks as the original file from two other nodes 

(e.g., B and A + B from Nodes 2 and 3, 

respectively). It then reconstructs and stores the 

lost chunk A on the new node. The total storage 

size is 2M, while the repair traffic is M. 

Regenerating codes have been proposed to reduce 

the repair traffic. One class of regenerating codes 

is called the exact minimum-storage regenerating 

(EMSR) codes . EMSR codes keep the same 

storage size as in RAID- 6 codes, while having the 

storage nodes send encoded chunks to the proxy  

so as to reduce the repair traffic. Figure 2(b) 

illustrates the double-fault tolerant implementation 

of EMSR codes. We divide a file into four chunks, 

and allocate the native and code chunks as shown 

in the figure. Suppose Node 1 is down. To repair 

it, each surviving node sends the XOR summation 

of the data chunks to the proxy, which then 

reconstructs the lost chunks. We can see that in 

EMSR codes, the storage size is 2M (same as 

RAID-6 codes), while the repair traffic is 0.75M, 
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which is 25% of saving (compared with RAID-6 

codes). EMSR codes leverage the notion of 

network coding, as the nodes generate encoded 

chunks during repair. 

 

 

 

 
Figure: System model for Repair 

operation 

 
4. FMSR CODE 

IMPLEMENTATION 

We now present the details for 

implementing FMSR codes in multiple- 

cloud storage. We specify three 

operations for FMSR codes on a 

particular file object: (1) file upload; (2) 

file download; (3) repair. Each cloud 

repository is viewed as a logical storage 

node. Our implementation assumes a 

thin-cloud interface [60], such that the 

storage nodes (i.e., cloud repositories) 

only need to support basic read/write 

operations. Thus, we expect that our 

FMSR code implementation is 

compatible with today’s cloud storage 

services. One property of FMSR codes is 

that we do not require lost chunks to be 

exactly reconstructed, but instead in each 

repair, we regenerate code chunks that 

are not necessarily identical to those 

originally stored in the failed node, as 

long as the MDS property holds. We 

propose a two-phase checking scheme, 

which ensures that the code chunks on all 

nodes always satisfy the MDS property, 

and hence data availability, even after 

iterative repairs. In this section, we 

analyze the importance of the two-phase 

checking scheme. 

4.1 Basic operations 

4.1.1 File Upload 

To upload a file F, we first divide it into 

k(n−k) equal- size native chunks, 

denoted by (Fi)i=1,2,···,k(n−k). We then 

encode these k(n − k) native chunks into 

n(n − k) code chunks, denoted by 

(Pi)i=1,2,···,n(n−k). Each Pi is formed  

by a linear combination of the k(n − k) 

native chunks. Specifically, we let EM = 

[αi,j] be an n(n−k)× k(n−k) encoding 

matrix for some coefficients αi,j (where i 

= 1,...,n(n − k) and j = 1,...,k(n − k)) in 

the Galois field GF(28). We call a row 

vector  of  EM  an  encoding  coefficient 
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vector (ECV), which contains k(n−k) 

elements. We let ECVi denote the ith  

row vector of EM. We com- pute each Pi 

by the product of ECVi and all the native 

chunks F1,F2,···, Fk(n−k), i.e., Pi = 

Pk(n−k) j=1 αi,jFj for 

i = 1,2,···,n(n−k), where all arithmetic 

operations are performed over GF(28). 

The code chunks are then evenly stored 

in the n storage nodes, each having (n−k) 

chunks. Also, we store the whole EM in 

a metadata object that is then replicated 

to all storage nodes There are many ways 

of constructing EM, as long as it passes 

our two-phase checking. Note that the 

implementation details of the arithmetic 

operations in Galois Fields are 

extensively discussed in 

 
4.1.2 File Download 

To download a file, we first download 

the corresponding metadata object that 

contains the ECVs. Then we select any k 

of the n storage nodes, and download the 

k(n−k) code chunks from the k nodes. 

The ECVs of the k(n−k) code chunks can 

form a k(n−k)×k(n−k) square matrix. If 

the MDS property is maintained, then by 

definition, the inverse of the square 

matrix must exist. Thus, we multiply the 

inverse of the square matrix with the 

code chunks and obtain the original k(n − 

k) native chunks. The idea is that we  

treat FMSR codes as standard Reed- 

Solomon codes, and our technique of 

creating an inverse matrix to decode the 

original data has been described in the 

tutorial [46]. 

4.1.3 Iterative Repairs 

We now consider the repair of FMSR 

codes for a file F for a permanent single- 

node failure. Given that FMSR codes 

regenerates different chunks in each 

repair, one challenge is to ensure that the 

MDS property still holds even after 

iterative repairs. This is in contrast to 

regenerating the exact lost chunks as in 

RAID-6, which guarantees the invariance 

of the stored chunks. Here, we propose a 

two-phase checking heuristic as follows. 

Suppose that the (r −1)th repair is 

successful, and we now consider how to 

operate the rth repair for a single 

permanent node failure (where r ≥ 1). We 

first check if the new set of chunks in all 

storage nodes satisfies the MDS property 

after the rth repair. In addition, we also 

check if another new set of chunks in all 

storage nodes still satisfies the MDS 

property after the (r + 1)th repair, should 

another single permanent node failure 
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occur (we call this the repair MDS 

(rMDS) property). 

 

 

 

 

5. NCCLOUD DESIGN AND 

IMPLEMENTATION 

We implement NC Cloud as a proxy 

that bridges user applications and 

multiple clouds. Its design is built on 

three layers. The file system layer 

presents NC Cloud as a mounted drive, 

which can thus be easily interfaced with 

general user applications. The coding 

layer deals with the encoding and 

decoding functions. The storage layer 

deals with read/write requests with 

different clouds. Each file is associated 

with a metadata object, which is 

replicated at each repository. The 

metadata object holds the file details and 

the coding information (e.g., encoding 

coefficients for FMSR codes). NCCloud 

is mainly implemented in Python, while 

the coding schemes are implemented in  

C for better efficiency. The file system 

layer is built on FUSE . The coding layer 

implements both RAID-6 and FMSR 

codes. Our RAID-6 code implementation 

is based on the Reed-Solomon code (as 

shown in Figure 2(a)) for baseline 

evaluation. We use zfec to  implement 

the RAID-6 codes, and we utilize the 

optimizations made in zfec to implement 

FMSR codes for fair comparison. Recall 

that FMSR codes generate multiple 

chunks to be stored on the same 

repository. To save the request cost 

overhead, multiple chunks destined for 

the same repository are aggregated 

before upload. Thus, FMSR codes keep 

only one (aggregated) chunk per file 

object on each cloud, as in RAID-6 

codes. To retrieve a specific chunk, we 

calculate its offset within the combined 

chunk and issue a range GET request. 

 

6. EVALUATION 

6.1 Cost Analysis 

6.1.1 Repair Cost Saving 

We first analyze the saving of  

monetary costs in repair in practice. 

Table 3 shows the monthly price plans 

for three major providers as of May 

2013. We take the cost from the first 

chargeable usage tier (i.e., storage usage 

within 1TB/month; data transferred out 

more than 1GB/month but less than 

10TB/month). From the analysis in 

Section 3, we can save 25-50% of the 

download traffic during storage repair. 
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The storage size and the number of 

chunks being generated per file object are 

the same in both RAID-6 and FMSR 

codes (assuming that we aggregate 

chunks in FMSR codes as described in). 

However, in the analysis, we have 

ignored two practical considerations: the 

size of metadata (Section 5) and the 

number of requests issued during repair. 

We now argue that they are negligible 

and that the simplified calculations based 

only on file size suffice for real-life 

applications. Metadata size: Our 

implementation currently keeps the 

metadata size of FMSR codes within 160 

bytes when n = 4 and k = 2, regardless of 

the file size. For a large n, say when n = 

12 and k = 10, the metadata size 

10 is still within 900 bytes. NCCloud 

aims at long-term backups, and can be 

integrated with other backup 

applications. Existing backup 

applications typically aggregate small 

files into a larger data chunk in order to 

save the processing overhead. For 

example, the default setting for Cumulus 

creates chunks of around 4MB each. 

Thus, the metadata size overhead can be 

made negligible. Since both RAID-6 and 

FMSR codes store the same amount of 

file data, they incur very similar storage 

costs in normal usage (assuming that the 

metadata costs are negligible). Number 

of requests providers charge for requests. 

RAID-6 and FMSR codes differ in the 

number of requests when retrieving data 

during repair. Suppose that we store a file 

object of size 4MB with n = 4 and k = 2. 

During repair, RAID-6 and FMSR codes 

retrieve two and three chunks, 

respectively. The cost overhead due to 

the GET requests for RAID-6 codes is at 

most 0.171%, and that for FMSR codes 

is at most 0.341%, a mere 0.17% 

increase. 

 
6.2 Response Time Analysis 

We deploy our NCCloud prototype in 

real environments. We evaluate the 

response time performance of three basic 

operations, namely file upload, file 

download, and repair, in two scenarios. 

The first part analyzes in detail the time 

taken by different NCCloud operations. 

It is done on a local cloud storage tested 

in order to lessen the effects of network 

fluctuations. The second part evaluates 

how NCCloud actually performs in a 

commercial cloud environment. All 

results are averaged over 40 runs. We 

assume that repair coefficients are 

generated offline , so the time taken by 



                                           ISSN : 2454-9924  

two-phase checking is not accounted for 

in the repair operation. 

 

7. RELATED WORK 

We   review  the related work  in 

multiple-cloud   storage  and   failure 

recovery. Multiple-cloud storage. There 

are several systems  proposed for 

multiple-cloud storage. HAIL provides 

integrity and availability guarantees for 

stored data. RACS uses erasure coding to 

mitigate vendor lock- ins when switching 

cloud vendors. It retrieves data from the 

cloud that is about to fail and moves the 

data to the new cloud. Unlike RACS, 

NCCloud excludes the failed cloud in 

repair. Vukoli´c advocates using multiple 

independent clouds to provide Byzantine 

fault tolerance. DEPSKY [10] addresses 

Byzantine fault tolerance by combining 

encryption and erasure coding for stored 

data.   Single-node  failure  recovery 

schemes that minimize the amount of 

data  read (or   I/Os)  for XOR-based 

erasure codes. For example, authors of 

[62], [63] propose opti- mal recovery for 

specific RAID-6 codes and reduce the 

amount of data read by up to around 25% 

(compared to conventional repair that 

downloads the amount of orig- inal data) 

for any number of nodes. Note that our 

FMSR codes can achieve 25% saving 

when the number of nodes is four, and up 

to 50% saving if the number of nodes 

increases. Authors of propose an 

enumeration-based approach to search 

for an optimal recovery solution for 

arbitrary XOR-based erasure codes. 

Efficient recovery is recently addressed 

in commercial cloud storage systems. For 

example, new constructions of non-MDS 

era- sure codes designed for efficient 

recovery are proposed for Azure and 

Facebook . The codes used in trade 

storage overhead for performance, and 

are mainly designed for data-intensive 

computing. Our work targets the cloud 

backup applications. Minimizing repair 

traffic. Regenerating codes stem from the 

concept of network codin2g and 

minimize the repair traffic among storage 

nodes. They exploit the optimal trade-off 

between storage cost and repair traffic, 

and there are two optimal points. 

 

8 .CONCLUSIONS 

We present NCCloud, a proxy-based, 

multiple-cloud storage system that 

practically addresses the reliability of 

today’s cloud backup storage. NCCloud 

not only provides fault tolerance in 

storage, but also allows cost-effective 
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repair when a cloud permanently fails. 

NCCloud implements a practical version 

of the functional minimum storage 

regenerating (FMSR) codes, which 

regenerates new parity chunks during 

repair subject to the required degree of 

data redundancy. Our FMSR code 

implementation eliminates the en- coding 

requirement of storage nodes (or cloud) 

during repair, while ensuring that the  

new set of stored chunks after each round 

of repair preserves the required fault 

tolerance. Our NCCloud prototype shows 

the effectiveness of FMSR codes in the 

cloud backup usage, in terms of 

monetary costs and response times. 
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